Sunday, October 25, 2020

Is San Onofre's plan to inspect the dry cask nuclear waste storage sufficient? NO! 


Is long-term dry-cask storage of nuclear waste in a salty environment safe? Probably not!

According to San Onofre's PR department, only 1 in 8 canisters will be randomly inspected for cracking -- about 12.5% of the total.

But how much of each canister will actually be inspected? Let's do some simple math:

San Onofre's 3D camera system (see photo) supposedly can see scratches down to 1/1,000th of an inch.

But that requires only being able to "see" only a small portion at one time.

The surface area of a dry cask is approximately 50,809 square inches (352.85 square feet). The bottom (about 26.5 square feet) of which is unavailable for inspecting with the current system (possibly the most important area since the entire weight of the cask rests on about 6 small metal plates underneath the cask).

If the inspection system can view one entire square inch in one second (humanly impossible in this author's opinion!) it would take approximately 47,000 seconds (~13 hours) to inspect one canister (not including the bottom at all). This would include zero overlap as the equipment moves up and down.

In any case, cracks can also form from the inside, which cannot be inspected at all. A crack forming from the inside could go completely around the canister and be 99.999% of the way through the thin (5/8ths inch) wall of the canister, and still would not be visible at all.

When lifting a canister out of the hole (perhaps 100 to 300 years from now) a circular crack would not need to be nearly that well formed to cause the canister to crack as it is being lifted, immediately releasing enormous amounts of radioactivity to the workers and the environment. Canisters are designed to be lifted from hooks at the top, such that the entire weight of the canister is supported by a couple of hooks at the top. The bottom of the canister and the sides support almost the entire weight since the contents rest on the bottom of the canister.

In this author's opinion, there is nothing safe about the inspection system or the eventual plan to lift and remove the canisters for transport to a permanent repository or secondary temporary repository, or to a reprocessing facility.

Ace Hoffman
Carlsbad, CA


Typical dry cask dimensions at SanO:
 69.75 inches wide and 197.0 inches in length.

area of a "right cylinder" (assumes square edges):
Calculated on Google:
((2 * (3.14159 * (69.75 / 2)) * 197) + (2 * 3.14159 * ((69.75 / 2) ^2))) = ~50809.82 square inches (about 352.85 square feet).
Calculated from:

radius r = 34.875 in
height h = 197 in
volume V = 752739.197 in3
lateral surface area L = 43167.8393 in2
top surface area T = 3821.01115 in2
base surface area B = 3821.01115 in2
total surface area A = 50809.8616 in2


"The 3-D camera system can see scratches down to one-thousandth of an inch, and has been able to document scratches that are about 26/1000 of an inch on canisters, Morris and Howell said. If those are the deepest scratches, they are well within tolerance, they said.

"Scratches are no more than the thickness of a credit card, said Edison’s Tom Palmisano at the San Onofre Community Engagement Panel meeting Thursday, March 28. The oxide layer on the exterior of the canisters reforms quickly, he said, so there’s no risk from corrosion in the short or long term."

"Stress corrosion cracking is an insidious form of corrosion since an applied stress and a corrosive environment can work together and cause complete failure of a component, when neither the stress nor the environment would be a problem on their own. The stress level may be very low, possibly only residual, and the corrosion may be initiated at a microscopic crack tip that does not repassivate rapidly. Incremental crack growth may then occur, resulting in fracture of the implant. Industrial uses of stainless steels in saline environments have shown susceptibility to stress corrosion cracking and therefore it is a potential source of failure for implanted devices."


"Deliquescence of these salts in a humid environment could create a chloride-rich brine on the canister surface. This, in addition to the presence of residual tensile stresses, could make the canister susceptible to chloride-induced stress corrosion cracking. "



Tuesday, September 29, 2020

Can spent nuclear fuel be transported safely in America with the current procedures and standards? No!

Can spent nuclear fuel be transported safely in America with the current procedures and standards? No!

September 29, 2020

The nuclear industry believes they can just put even a cracked-and-leaking canister into a transportation outer-pack and off it goes... but:

One only needs to look at our transportation infrastructure to know that spent fuel transport is a crap shoot.

When the Mianus River Bridge in Connecticut collapsed in 1983, killing three people, including a tractor-trailer driver, I was traveling over that bridge twice a day.  I HEARD the screeching of the huge metal pin that eventually failed. I even followed the truck that was next to me the moment I heard the screech to determine if it was the truck I had heard -- or the bridge. I followed it for at least two miles. I saw that truck drive over numerous bumps and potholes in the poorly-maintained I-95 Interstate and it never screeched again. This made me absolutely sure it was the bridge I had heard. A few days or maybe a week later it collapsed. It turned out dozens of local residents had heard it screech repeatedly and complained to CT-DOT, to no avail. CT-DOT did not come out and inspect the bridge, which would have immediately shut down the bridge and saved those lives and millions of dollars in damage.

I was already opposed to nuclear power. I had, for example, created a comedy routine called Three Mile Island Beatles in 1979, which aired nationally on Pacifica stations and on the Dr. Demento show:

I did NOT call CT-DOT about the bridge. I think that's what turned me from merely complaining/explaining to the public about problems to complaining to the government directly about problems (so far, to no avail). I probably have attended more NRC hearings about San Onofre over the past 30 years than anyone else...

And then there's the Baltimore Tunnel fire in 2001. Time-at-Temperatures far exceeded anything the spent fuel canisters could have survived. When I mentioned this to Nuclear Regulatory Commission officials they assured me that chemical and fuel trains would not be allowed to be passing the spent fuel trains. This was a made-up baloney excuse off the top of the guy's head at the time. They do that all the time.

Then there was the collapse of the I-35 West bridge in Minnesota in 2007, which killed 13 people and injured 145. A rail line ran below the bridge portion that collapsed; any spent fuel that would have been traveling on that rail line at the time would have been crushed like an egg under an anvil. Any traveling on the bridge would have fallen farther than NRC regulations assume is possible.

If you look at the actual standards that spent fuel casks are expected to meet for drop survivability, crush survivability, fire survivability, etc. it will be obvious these are way too lax (sorry, I haven't actually seen them in many years, but I haven't heard they've been made significantly stronger).

That famous video of a jet plane crashing into one? It was just a fighter jet, and my understanding is that the engine was removed! (this means the turbine shaft -- the part most likely to penetrate a dry cask -- was not there). It wasn't a 747 loaded with fuel, with four enormous turbine shafts.  It wasn't traveling nearly as fast as a crashing jet would be going. And it wasn't a terrorist with a weapon that can penetrate 8 inches of steel or a dozen feet of concrete (such weapons exist and can be obtained by terrorist groups fairly easily).

Their tests are inadequate, their claims are false, their "perfect record" is irrelevant.

Thank you for attending my Ted Rant.

Ace Hoffman
Carlsbad, CA


From: Donna Gilmore 
Sent: Wednesday, September 30, 2020, 08:09:33 AM PDT

Ace, the NRC approved transport specs have gotten even worse.  Heavier loads with more and hotter fuel assemblies are being approved.  

The NRC refuses to reveal the thickness of the lead layer in the Holtec high burnup transport casks. 

Information on handling high burnup fuel is labeled "proprietary" in the Areva high burnup transport cask used for transporting thin-wall canisters.  

No inspection is required of the condition of the thin-wall canister or the canister contents before transport in spite of the NRC knowing high burnup fuel and other fuel can degrade during dry storage. The NRC admits it doesn't know if normal train vibrations will cause high burnup fuel rods to fail. 

They have no plan to prevent failure or deal with the consequences of failure. They refer to this as "out of scope" to avoid discussing this in various proceedings. 

The proposed CIS plans (in New Mexico and Texas) are to return leaking canisters back to sender. The NRC is ignoring this problem. 

By the NRC approving uninspectable welded shut thin-wall canisters and allowing zirconium clad high burnup fuel, they've created a perfect storm for failure in both storage and transport. 

All thin-wall canisters must be replaced with proven thick-wall casks designed for both storage and transport. There are no other short-term options. 

And no long term options exist -- despite the unsubstantiated hope for a geological repository being perpetuated as a solution. 

We cannot kick this can down the road any longer. We are nearing the end of this road. 

Donna Gilmore


Monday, September 28, 2020

Reprocessing benefits no one in the long run...

(Note: This essay was written September 22, 2020 in response to an article in the Orange County Register.)


Nuclear waste reprocessing is a Faustian Bargain if ever there was one.

First of all, there are two main types of waste products in the spent fuel from nuclear reactors: Fission products and plutonium. Neither exist prior to using the fuel in the reactor. In fact, a pellet of unused nuclear fuel can be held reasonably safely in your hand with only a pair of cotton gloves! Try that for a fraction of a second with a spent fuel pellet, which is about ten million times more radioactive, and you'll be dead shortly thereafter.

Separating out the fission products (which are of no use to the nuclear industry, unlike the plutonium and uranium-235) is a very, VERY dirty job. It is dangerous for the workers and many of the fission products remain hazardous for hundreds of years (for example, isotopes of cesium and strontium have half-lives of about 30 years, so their hazardous lifespan is at least ten times that -- longer than America has been an independent nation).

Storage of these products is no easy trick and they are extremely hazardous to all living things.

Plutonium is particularly useful for making bombs, so any attempt to separate out the fissile material requires extremely careful international monitoring -- which has failed frequently in the past. All reprocessing requires enormous care to be done correctly, and San Onofre can't even load the canisters properly, could not replace the steam generators properly, and had numerous leaks and near-misses during its decades of operation.

Of course everyone wants the waste off the beach -- everyone, that is, except everyone that lives wherever it might end up. Citizens of New Mexico, a prime target of the waste from the entire country right now, are vehemently opposed to becoming America's sole nuclear waste dump.

But the idea of putting it all in one place is particularly attractive to the nuclear industry specifically because that way, it would already be located where a single reprocessing facility wouldn't need it shipped a second time. All shipments of nuclear waste are also fraught with danger.

And notice that every plan for moving the waste off the beach includes removing ALL liability for the waste from the utilities -- they won't support ANY plan that doesn't include that provision. So who picks up the liability? The taxpayers.

There is currently enough nuclear waste for over 10,000 canisters, and that's how many the New Mexico plan is expected to hold. But that's not even enough, since more is created every day.

None of this has to happen. From better batteries to more efficient solar cells and more bird-strike resistant wind turbines and a thousand other energy efficiency and renewable energy improvements in the recent past (in other words, ALREADY accomplished) there is no need for nuclear power on this earth.

Lastly, any "solution" to the nuclear waste problem without shutting all the plants down will only encourage this dirty industry to continue -- a Fukushima event is inevitable in America if we don't stop. Reprocessing guarantees a trillion-dollar accident sooner or later, either at the facility, at the storage area, during transport, or at a reactor. Terrorism and nuclear war are additional hazards we need to consider seriously, especially since rogue nations such as North Korea can now, or soon will be able, to bomb us and it may not even be possible to know who did it, if the missile comes from a submarine, for example.

Ace Hoffman
Carlsbad, CA